Describe, Explain, Plan and Select: Interactive Planning with
Large Language Models Enables Open-World Multi-Task Agents

Introduction

This paper aim to learn an agent that can solve "arbitrary long horizon" (long sequence of goals such
as in retrosynthesis) and goal-reaching tasks with image observation and language goals. Specifically,
it focuses on Minecraft which is an open-world video game where users can mine the ground and their
surroundings for resources to build absolutely anything they want. People have built all sorts of things,
from a simple sleeping bed to entire cities from scratch. As per the paper, developing multi-task agents
that can accomplish a vast and diverse suite of tasks in an open-ended world has been viewed as one
of the key milestones towards generally capable artificial intelligence.

Below is a 2 minute video that shows an Al agent trying to find a resource "diamond" by mining the
earth.

https://www.youtube.com/watch?v=GHo8B4JMC38

This paper identifies two primary challenges of planning in these environments:

1. Long-term planning: First, many tasks in Minecraft can be complex, as they usually comprise
multiple sub-goals to be completed, e.g. the task build a bed includes 7 sub-goals (mine wood

blocks forwood, kill sheeps| for bedding, etc.) and therefore demand significantly longer
reasoning steps of the planner . Meanwhile, many of these sub-goals have to be planned
precisely with the exact object name and quantities, e.g. mine 3 woods|, kill 3 sheep]
otherwise, the subsequent sub-goals won’t be executed due to failed preconditions.

2. Planning efficiency: Second is the efficiency of the produced plans, which is illustrated in the
below figure. The planners do not consider the current proximity of the sub-goals to the agent

when devising the plans, thereby producing inefficient plans. In the below figure, the initial plan (in
black) was to mine wood first, then ki1l sheep. However, other way around is more efficient (in

red). The selector part modifies the plan from the planner..


https://www.youtube.com/watch?v=GHo8B4JMC38

chicken
-
11

wood

‘—IE Original plan generated by LLM planner
73— Modificd plan by Selector

To this end, the authors propose “Describe, Explain, Plan and Select” (DEPS), an interactive planning
approach based on Large Language Models (LLMs) to alleviate the aforementioned issues in most
open-world environments. Whenever a failure happens when executing the current plan, a
descriptor Will summarize the current situation as text and send it back to the LLM-based planner|.
The LLM-based planner will then be prompted as explainer to locate the errors in the previous plan.
Finally, the planner will re-plan the task to obtain a correct plan. This allows the feedback from the
agents to be better handled by the planner and increases the overall success rate on Minecraft tasks
by 52.74%. Additionally, the selector will modify the plan depending on which sub-tasks are most

accessible based on the proximity to the agent.

Below figure shows an example of the whole process



Ground Truth Plan Py,:

! How to mine | diamond from scratch?

Initial Plan Py: “L_jé.‘ﬁ—)‘—ib
& 16 1
/B> A0
8 3 3 1 1
First goal is log (“-’) Oak log ‘ in state

s¢ has shortest predicted horizon. Set “mine 4
oak log ‘” as first goal g,.

ES

Descriptor I finish goal go.

Current goal is (“ﬁ). I can craft oak
planks in state s;. Set “craft 16 oak planks.”

as goal g,. ... Set “crafi I crafting table ‘ 7 as
goal g,. ... Set “craft § sticks /' 7 as goal g3.

Descriptor ~ 1finish goal g4, g2. g3.

Set “mine 3 iron_ore ‘ ? as goal g,

Lol .. Please re-plan task “mine 1 diamond”.

Mine iron_ore ‘ need stone_pickaxe ,a .

Planner

Selector

Selector

Selector

1 fail on g, . Inventory = {. :10, :8,‘ :1}.

Explainer

99389088~ /> 8> /> 8->8-8>-> 70

I e

;|—>.—> ;;—>q;;a—> ﬁ—)@ Planner
Set “craft | wooden_pickaxe ;"” as goal gy. ...
Set “Mine 3 cobblestone ‘ ” as goal gs. ... Set Selector

“Craft 1 stone_pickaxe /) as goal gg. ...
I finish goal g4, gs, gs- 1 fail on g;.
Descriptor Inventory = {. 7, /4, .:1, ‘:3}.

.. Please re-plan task “mine 1 diamond”.

Smelt iron_ingot (= need to use furnace ‘ : Explajner

Plan Py: - ..—)‘_> /_)ﬁ_>‘_)ﬁ_>
Planner
.—>‘—> .—>c;>—> ﬁ—)@
Set “Mine § cobbiesmne"’ as goal g7. ...
Set “Craft 1 furnace & ” as goal gg. ... Selector
Coal @@ in state s, has shorter predicted horizon Selector

than iron_ore‘. Set “mine 1 coal” as goal gg

A ground truth plan is given to mine a diamond. You ask the LLM model "How do | mine 1 diamond

from scratch?" The planner comes with a set of goals, then selector decides which goals to execute

first. If it's finished, tell the LLM that it's finished and it'll come up with next goals. If a goal can't be

achieved (task failed), write a text explanation to the LLM and it'll come back with an updated plan.

Relevance to retrosynthesis

Retrosynthesis have something of a similar process. There's a goal of identifying an optimal synthesis

path (like mining a diamond) and to achieve it, multiple sub-goals have to be completed (liking mining

for wood). Sometimes, a path might not be feasible (goal failed) so we can ask the LLM (explainer) to

come up with a new plan. Basically, an interactive retrosynthesis planning.



